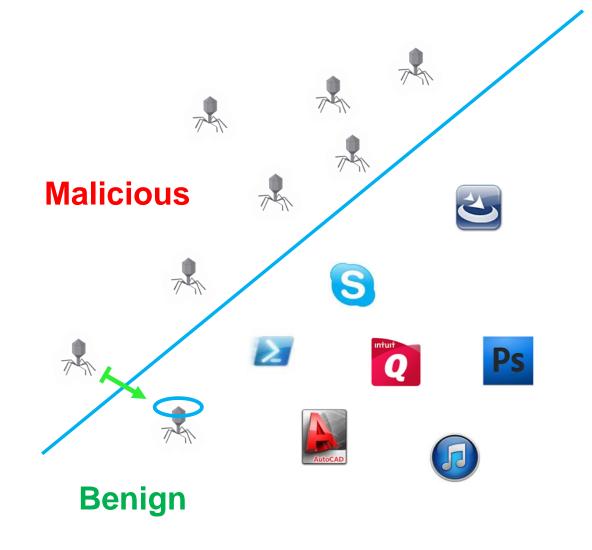


Adversarial ML: How Artificial Intelligence is Enabling Cyber Resilience

Michael Slawinski, Ph.D. Staff Data Scientist BlackBerry Cylance

Josh Fu, CISM, CISSP Security Engineer BlackBerry Cylance

Agenda


- 1. File Classification via Machine Learning
- 2. Weaknesses of Machine Learning Classifiers
- 3. How these weaknesses can be exploited to make a malicious file look benign
- 4. How to harden your model against adversarial attacks

Classification

- How to tell if a script/executable/word document/PDF is malicious?
- Many security vendors have large labeled datasets
- Use these labeled samples to train a classifier
- How can this classifier be attacked?
 - Is it possible to perturb a file in such a way as to cross the decision boundary?

Naiveté is Dangerous

We make the mistake of assuming the model is judging as we judge.

In other words, we assume the machine learning model has baked into it a conceptual understanding of the objects being classified...

Example: Lie Detectors – what is a lie?

Human Point of View

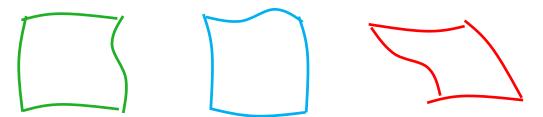
Lie is a statement believed to be false but offered as true

Lie Detector Point of View

Heart rate above a threshold Perspiration above a threshold Body movement above a threshold

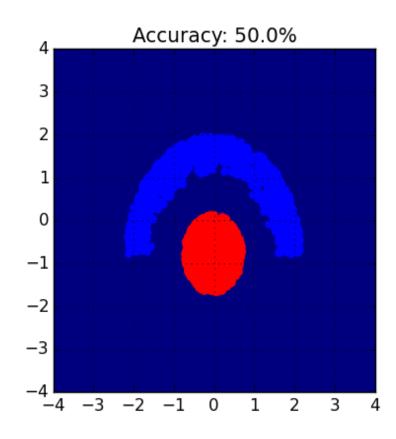
Machine Learning – definition and utility

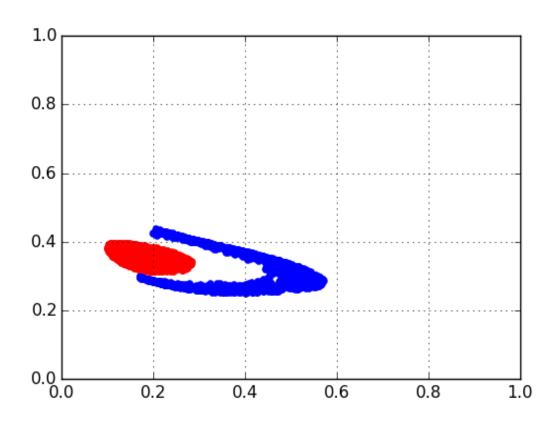
Definition: The design and implementation of learning algorithms.

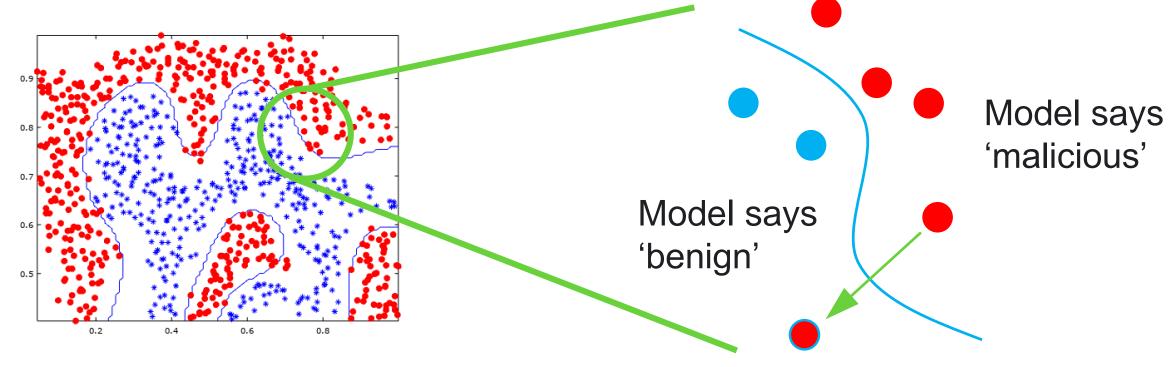

Learning Algorithms: Algorithms which are not explicitly programmed

Decision making scheme is a result of optimizing some objective function based on observed data

Utility of Learning Algorithms: Why are learning algorithms necessary?


Extreme data variability resulting in a possibly infinite signature set

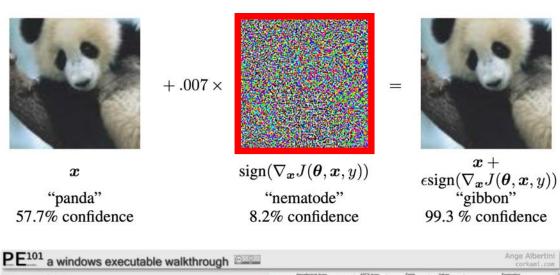

Example: Hand-drawn squares

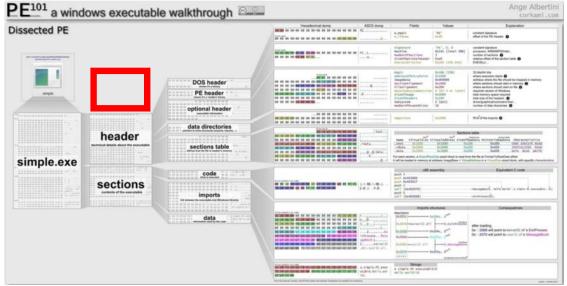

Machine Learning – definition and utility

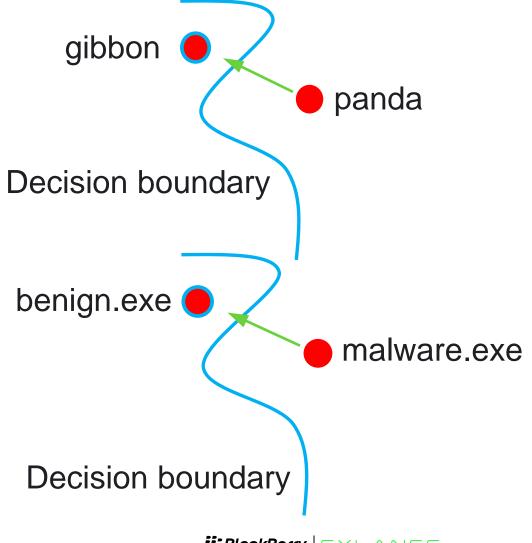
Adversarial Examples

If a new sample lands within the boundary, we classify it as benign. Otherwise, malicious.

Functionally Model point of view







Adversarial Machine Learning

Vulnerability to Adversarial Attacks – 'Snow Features'

Training Set

Model Says: 'Wolf' 99.9%

Upshot: Model overemphasizing white, i.e., snow pixels due to high wolf/snow correlation

Vulnerability to Adversarial Attacks

Snow Features: model features which are not fundamental to the nature of the object being classified, but which aid in classification due to co-occurrence.

Models trained on such features are vulnerable to adversarial attacks

Key Takeaway:

Malicious and Benign files have snow features too!

Examples:

Certain strings, header information, file size, etc.

CylancePROTECT® Defenses Against Adversarial Attacks

1. Reduce leveraging of 'snow features'

Features which when perturbed, change the nature of the original file

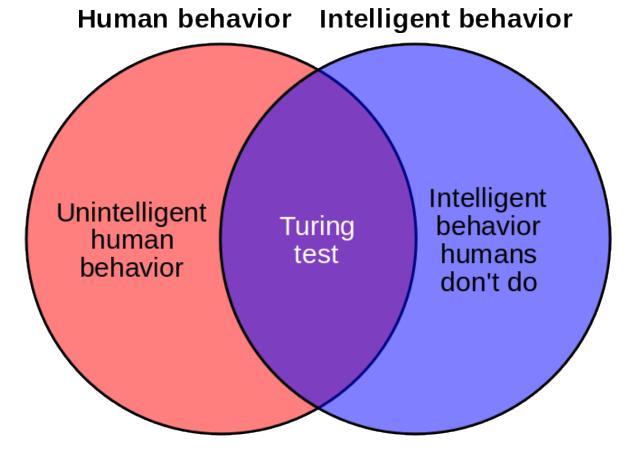
2. Adversarial Training

Leverage more sophisticated learning algorithms

3. Anomaly Detection

 Learn probability distribution of the training set so that files altered to trick the classifier will be assigned very low probability

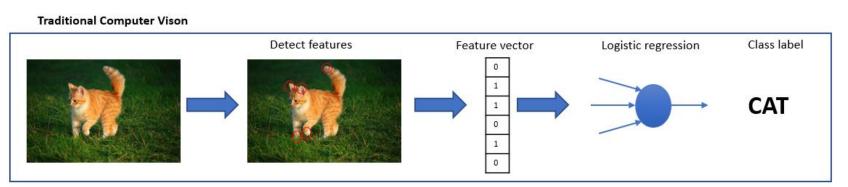
4. Inclusion of Adversarial Examples in Training


 Construct adversarial examples at scale and add them to the training set to familiarize the model with such samples

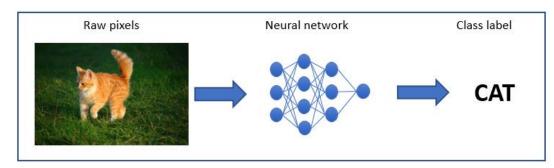
Practical Applications

Why CAPTCHAs

- CAPTCHA
 (Completely
 Automated
 Public Turing
 test to tell
 Computers
 and Humans
 Apart)
- Turing Test



Source: https://www.maketecheasier.com/captchas-why-we-need-them/

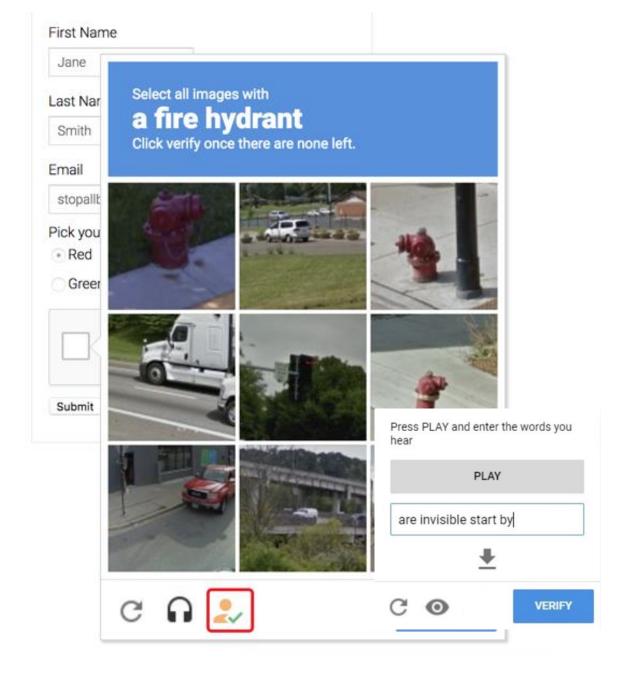


Usage vs Trickery

- CNN for CAPTCHAs
- Natural Language
 Processing (NLP)
 - Twitter Bot JohnSeymour and PhilipTully at ZeroFOX in2016
 - Laser phishing
- Speech to Text

Deep learning

Today's CAPTCHA Breaking Techniques


I will always choose a lazy person to do a difficult job...because he will find an easy way to do it.

- Bill Gates

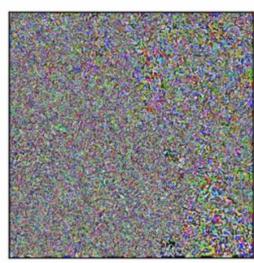
Browser Extension

- Buster: Captcha Solver for Humans by Armin Sebastian
- Uses Google's own Natural Language Processing
- This is the state of security today

Noise as Defense

- Mitigate model discovery
- Optical vsDigitalclassification
- Noise is one way of enabling resilience

Iteration: 6


Source score: 0.00%, class-number: 837, class-name: sweatshirt Target score: 99.09%, class-number: 300, class-name: bookcase Gradient min: -0.000029, max: 0.000021, stepsize: 244856.71

Original Image: sweatshirt (19.73%)

Image + Noise: sweatshirt (0.00%) bookcase (99.09%)

Amplified Noise

Noise min: -3.000, max: 3.000, mean: -0.001, std: 0.668

TensorFlow Tutorial #11 Adversarial Examples

Key Takeaways

- 1. Tools can be easy and cheap
- 2. ML will have a role in the arms race
- 3. The next frontier for ML \rightarrow solving identity and authentication challenges

How ML Applies to Cylance

- Recognition of files → CylancePROTECT and Cylance Smart Antivirus[™]
- Recognition of processes → CylanceOPTICS™
- Recognition of people → CylancePERSONA
- Additional Benefits:
 - Advanced enough to even work offline and on old systems with no updates
 - Faster threat hunting
 - CylancePROTECT also works against fileless attacks and scripts
 - Faster and effective CylanceCONSULTING Services (IR, CA, M&A, Staff, Threat Hunting, and more

Get a Demo

See the next generation in endpoint security solutions – and take that first step towards getting your organization to a state of prevention.

THANK YOU!

- Cylance <u>www.cylance.com</u>
- Best Machine Learning Resources for Starters
 https://machinelearningmastery.com/best-machine-learning-resources-for-getting-started/
- Twitter Story https://www.nytimes.com/2018/11/19/science/artificial-intelligence-deepfakes-fake-news.html
- Google cloud Vision API <u>https://cloud.google.com/vision/pricing</u>
- Y Combinator
 https://blog.ycombinator.com/how-adversarial-attacks-work/
- DEFCON 16: CAPTCHAS: Are they really hopeless? (Yes) https://www.youtube.com/watch?v=8ic1LToPsro
- Use Vision API to parse captcha screenshot https://cloud.google.com/vision/docs/reference/rest/

Twitter: @cylanceinc and

@jfusecurity

Github: https://github.com/gtown

rocks

Questions and Answers

